تبلیغات
وب سایت تخصصی نقشه کشی صنعتی - هندسه اقلیدسی Euclidean Geometry

هدف از راه اندازی این وب سایت این است که گامی در پیشرفت دانشجویان رشته نقشه کشی صنعتی برداشته باشیم

حمید رضا بوچانی

جستجو

 

هندسه اقلیدسی Euclidean Geometry

1389/08/6   02:44

 

 

برای  مشاهده مطالب به ادامه مطلب بروید

علومی که از یونان باستان توسط اندیشمندان اسلامی محافظت و تکمیل شد، از قرون یازدهم میلادی به بعد به اروپا منتقل شد، بیشتر شامل ریاضی و فلسفه ی طبیعی بود. فلسفه ی طبیعی توسط کوپرنیک، برونو، کپلر و گالیله به چالش کشیده شد و از آن میان فیزیک نیوتنی بیرون آمد. چون کلیسا خود را مدافع فلسفه طبیعی یونان می دانست و کنکاش در آن با خطرات زیادی همراه بود، اندیشمندان کنجکاو بیشتر به ریاضیات می پرداختند، زیرا کلیسا نسبت به آن حساسیت نشان نمی داد. بنابراین ریاضیات نسبت به فیزیک از پیشرفت بیشتری برخوردار بود. یکی از شاخه های مهم ریاضیات هندسه بود که آن هم در هندسه ی اقلیدسی خلاصه می شد.
در هندسه ی اقلیدسی یکسری مفاهیم اولیه نظیر خط و نقطه تعریف میشود و پنچ اصل به عنوان بدیهیات آن پذیرفته میشود و سایر قضایا با استفاده از این اصول استنتاج میشوند.
اصول

هندسه ی اقلیدسی بر اساس پنچ اصل موضوع زیر شکل گرفت

اصل اول - از هر نقطه می توان خط مستقیمی به هر نقطه ی دیگر کشید
اصل دوم - هر پاره خط مستقیم را می توان روی همان خط به طور نامحدود امتداد داد
اصل سوم - می توان دایره ای با هر نقطه دلخواه به عنوان مرکز آن و با شعاعی مساوی هر پاره خط رسم کرد
اصل چهارم - همه ی زوایای قائمه با هم مساوی اند
اصل پنجم - از یک نقطه خارج یک خط، یک خط و و تنها یک خط می توان موازی با خط مفروض رسم کرد.

 

هندسه اقلیدسی    Euclidean Geometry

علومی که از یونان باستان توسط اندیشمندان اسلامی محافظت و تکمیل شد، از قرون یازدهم میلادی به بعد به اروپا منتقل شد، بیشتر شامل ریاضی و فلسفه ی طبیعی بود. فلسفه ی طبیعی توسط کوپرنیک، برونو، کپلر و گالیله به چالش کشیده شد و از آن میان فیزیک نیوتنی بیرون آمد. چون کلیسا خود را مدافع فلسفه طبیعی یونان می دانست و کنکاش در آن با خطرات زیادی همراه بود، اندیشمندان کنجکاو بیشتر به ریاضیات می پرداختند، زیرا کلیسا نسبت به آن حساسیت نشان نمی داد. بنابراین ریاضیات نسبت به فیزیک از پیشرفت بیشتری برخوردار بود. یکی از شاخه های مهم ریاضیات هندسه بود که آن هم در هندسه ی اقلیدسی خلاصه می شد.
در هندسه ی اقلیدسی یکسری مفاهیم اولیه نظیر خط و نقطه تعریف میشود و پنچ اصل به عنوان بدیهیات آن پذیرفته میشود و سایر قضایا با استفاده از این اصول استنتاج میشوند.
اصول

هندسه ی اقلیدسی بر اساس پنچ اصل موضوع زیر شکل گرفت

اصل اول - از هر نقطه می توان خط مستقیمی به هر نقطه ی دیگر کشید
اصل دوم - هر پاره خط مستقیم را می توان روی همان خط به طور نامحدود امتداد داد
اصل سوم - می توان دایره ای با هر نقطه دلخواه به عنوان مرکز آن و با شعاعی مساوی هر پاره خط رسم کرد
اصل چهارم - همه ی زوایای قائمه با هم مساوی اند
اصل پنجم - از یک نقطه خارج یک خط، یک خط و و تنها یک خط می توان موازی با خط مفروض رسم کرد.

هندسه نااقلیدسی     Non Euclidean Geometry

در قرن نوزدهم دو ریاضیدان بزرگ به نام «لباچفسكى» و «ریمان» دو نظام هندسى را صورت بندى كردند كه هندسه را از سیطره اقلیدس خارج مى كرد. صورت بندى «اقلیدس» از هندسه تا قرن نوزدهم پررونق ترین كالاى فكرى بود و پنداشته مى شد كه نظام اقلیدس یگانه نظامى است كه امكان پذیر است. این نظام بى چون و چرا توصیفى درست از جهان انگاشته مى شد. هندسه اقلیدسى مدلى براى ساختار نظریه هاى علمى بود و نیوتن و دیگر دانشمندان از آن پیروى مى كردند. هندسه اقلیدسى بر پنج اصل موضوعه استوار است و قضایاى هندسه با توجه به این پنج اصل اثبات مى شوند. اصل موضوعه پنجم اقلیدس مى گوید: «به ازاى هر خط و نقطه اى خارج آن خط، یك خط و تنها یك خط به موازات آن خط مفروض مى تواند از آن نقطه عبور كند.» هندسه «لباچفسكى» و هندسه «ریمانى» این اصل موضوعه پنجم را مورد تردید قرار دادند. در هندسه «ریمانى» ممكن است خط صافى كه موازى خط مفروض باشد از نقطه مورد نظر عبور نكند و در هندسه «لباچفسكى» ممكن است بیش از یك خط از آن نقطه عبور كند. با اندكى تسامح مى توان گفت این دو هندسه منحنى وار هستند. بدین معنا كه كوتاه ترین فاصله بین دو نقطه یك منحنى است.
هندسه اقلیدسى فضایى را مفروض مى گیرد كه هیچ گونه خمیدگى و انحنا ندارد. اما نظام هندسى لباچفسكى و ریمانى این خمیدگى را مفروض مى گیرند. (مانند سطح یك كره) همچنین در هندسه هاى نااقلیدسى جمع زوایاى مثلث برابر با ۱۸۰ درجه نیست. (در هندسه اقلیدسى جمع زوایاى مثلث برابر با ۱۸۰ درجه است.) ظهور این هندسه هاى عجیب و غریب براى ریاضیدانان جالب توجه بود اما اهمیت آنها وقتى روشن شد كه نسبیت عام اینشتین توسط بیشتر فیزیكدانان به عنوان جایگزینى براى نظریه نیوتن از مكان، زمان و گرانش پذیرفته شد. چون صورت بندى نسبیت عام اینشتین مبتنى بر هندسه «ریمانى» است. در این نظریه هندسه زمان و مكان به جاى آن كه صاف باشد منحنى است. نظریه نسبیت خاص اینشتین تمایز آشكارى میان ریاضیات محض و ریاضیات كاربردى است. هندسه محض مطالعه سیستم هاى ریاضى مختلف است كه به وسیله نظام هاى اصول موضوعه متفاوتى توصیف شده اند. برخى از آنها چندبعدى و یا حتى nبعدى هستند. اما هندسه محض انتزاعى است و هیچ ربطى با جهان مادى ندارد یعنى فقط به روابط مفاهیم ریاضى با همدیگر، بدون ارجاع به تجربه مى پردازد. هندسه كاربردى، كاربرد ریاضیات در واقعیت است. هندسه كاربردى به وسیله تجربه فراگرفته مى شود و مفاهیم انتزاعى برحسب عناصرى تفسیر مى شوند كه بازتاب جهان تجربه اند. نظریه نسبیت، تفسیرى منسجم از مفهوم حركت، زمان و مكان به ما مى دهد. اینشتین براى تبیین حركت نور از هندسه نااقلیدسى استفاده كرد. بدین منظور هندسه «ریمانى» را برگزید.
هندسه اقلیدسى براى دستگاهى مشتمل بر خط هاى راست در یك صفحه طرح ریزى شده است اما در عالم واقع یك چنین خط هاى راستى وجود ندارد. اینشتین معتقد بود امور واقع هندسه ریمانى را اقتضا كرده اند. نور بر اثر میدان هاى گرانشى خمیده شده و به صورت منحنى در مى آید یعنى سیر نور مستقیم نیست بلكه به صورت منحنى ها و دایره هاى عظیمى است كه سطح كرات آنها را پدید آورده اند. نور به سبب میدان هاى گرانشى كه بر اثر اجرام آسمانى پدید مى آید خط سیرى منحنى دارد. براساس نسبیت عام نور در راستاى كوتاه ترین خطوط بین نقاط حركت مى كند اما گاهى این خطوط منحنى هستند چون حضور ماده موجب انحنا در مكان - زمان مى شود.
در نظریه نسبیت عام گرانش یك نیرو نیست بلكه نامى است كه ما به اثر انحناى زمان _ مكان بر حركت اشیا اطلاق مى كنیم. آزمون هاى عملى ثابت كردند كه شالوده عالم نااقلیدسى است و شاید نظریه نسبیت عام بهترین راهنمایى باشد كه ما با آن مى توانیم اشیا را مشاهده كنیم. اما مدافعین هندسه اقلیدسى معتقد بودند كه به وسیله آزمایش نمى توان تصمیم گرفت كه ساختار هندسى جهان اقلیدسى است یا نااقلیدسى. چون مى توان نیروهایى به سیستم مبتنى بر هندسه اقلیدسى اضافه كرد به طورى كه شبیه اثرات ساختار نااقلیدسى باشد. نیروهایى كه اندازه گیرى هاى ما از طول و زمان را چنان تغییر دهند كه پدیده هایى سازگار با زمان - مكان خمیده به وجود آید. این نظریه به «قراردادگرایى» مشهور است كه نخستین بار از طرف ریاضیدان و فیزیكدان فرانسوى «هنرى پوانكاره» ابراز شد. اما نظریه هایى كه بدین طریق به دست مى آوریم ممكن است كاملاً جعلى و موقتى باشند. اما دلایل كافى براى رد آنها وجود دارد.


 در هندسه ی اقلیدسی یكسری مفاهیم اولیه نظیر خط و نقطه تعریف شده بود و پنچ اصل را به عنوان بدیهیات پذیرفته بودند و سایر قضایا را با استفاده از این اصول استنتاج می كردند. اما اصل پنجم چندان بدیهی به نظر نمی رسید. بنابر اصل پنجم اقلیدس از یك نقطه خارج از یك خط، یك خط و تنها یك خط می توان موازی با خط مفروض رسم كرد. برخی از ریاضیدانان مدعی بودند كه این اصل را می توان به عنوان یك قضیه ثابت كرد. در این راه بسیاری از ریاضیدانان تلاش زیادی كردند و نتیجه نگرفتند. خیام ضمن جستجوی راهی برای اثبات "اصل توازی" مبتكر مفهوم عمیقی در هندسه شد. در تلاش برای اثبات این اصل، خیام گزاره هایی را بیان كرد كه كاملا مطابق گزاره هایی بود كه چند قرن بعد توسط والیس و ساكری ریاضیدانان اروپایی بیان شد و راه را برای ظهور هندسه های نااقلیدسی در قرن نوزدهم هموار كرد. سرانجام و پس از دو هزار سال اصولی متفاوت با آن بیان كردند و هندسه های نااقلیدسی شكل گرفت. بدین ترتیب علاوه بر فلسفه ی طبیعی ریاضیات نیز از انحصار یونانی خارج و در مسیری جدید قرار گرفت و آزاد اندیشی در ریاضیات آغاز گردید.

اصطلاحات بنیادی ریاضیات

طی قرنهای متمادی ریاضیدانان اشیاء و موضوع های مورد مطلعه ی خود از قبیل نقطه و خط و عدد را همچون كمیت هایی در نظر می گرفتند كه در نفس خویش وجود دارند. این موجودات همواره همه ی كوششهای را كه برای تعریف و توصیف شایسته ی آنان انجام می شد را با شكست مواجه می ساختند. بتدریج این نكته بر ریاضیدانان قرن نوزدهم آشكار گردید كه تعیین مفهوم این موجودات نمی تواند در داخل ریاضیات معنایی داشته باشد. حتی اگر اصولاً دارای معنایی باشند. بنابراین، اینكه اعداد، نقطه و خط در واقع چه هستند در علوم ریاضی نه قابل بحث است و نه احتیاجی به این بحث هست. یك وقت براتراند راسل گفته بود كه ریاضیات موضوعی است كه در آن نه می دانیم از چه سخن می گوییم و نه می دانیم آنچه كه می گوییم درست است.  دلیل آن این است كه برخی از اصطلاحات اولیه نظیر نقطه، خط و صفحه تعریف نشده اند و ممكن است به جای آنها اصطلاحات دیگری بگذاریم بی آنكه در درستی نتایج تاثیری داشته باشد. مثلاً می توانیم به جای آنكه بگوییم دو نقطه فقط یك خط را مشخص می كند، می توانیم بگوییم دو آلفا یك بتا را مشخص می كند. با وجود تغییری كه در اصطلاحات دادیم، باز هم اثبات همه ی قضایای ما معتبر خواهد ماند، زیرا كه دلیل های درست به شكل نمودار بسته نیستند، بلكه فقط به اصول موضوع كه وضع شده اند و قواعد منطق بستگی دارند. بنابراین، ریاضیات تمرینی است كاملاً صوری برای استخراج برخی نتایج از بعضی مقدمات صوری. ریاضیات احكامی می سازند به صورت هرگاه چنین باشد، آنگاه چنان خواهد شد و اساساً در آن صحبتی از معنی فرضها یا راست بودن آنها نیست. این دیدگاه (صوریگرایی) با عقیده ی كهن تری كه ریاضیات را حقیقت محض می پنداشت و كشف هندسه های نااقلیدسی بنای آن را درهم ریخت، جدایی اساسی دارد. این كشف اثر آزادی بخشی بر ریاضیدانان داشت.

اشكالات وارد بر هندسه اقلیدسی

هندسه ی اقلیدسی بر اساس پنچ اصل موضوع زیر شكل گرفت:

اصل اول - از هر نقطه می توان خط مستقیمی به هر نقطه ی دیگر كشید.
اصل دوم - هر پاره خط مستقیم را می توان روی همان خط به طور نامحدود امتداد داد.
اصل سوم - می توان دایره ای با هر نقطه دلخواه به عنوان مركز آن و با شعاعی مساوی هر پاره خط رسم كرد.
اصل چهارم - همه ی زوایای قائمه با هم مساوی اند.
اصل پنجم - از یك نقطه خارج یك خط، یك خط و و تنها یك خط می توان موازی با خط مفروض رسم كرد.

اصل پنجم اقلیدس كه ایجاز سایر اصول را نداشت، به هیچوجه واجد صفت بدیهی نبود. در واقع این اصل بیشتر به یك قضیه شباهت داشت تا به یك اصل، گویا خود اقلیدس هم به اصل پنجم اعتماد كامل نداشت چون استفاده از آن را تا قضیه بیست و نهم خود به تاخیر انداخته است. بنابراین طبیعی بود كه لزوم واقعی آن به عنوان یك اصل مورد سئوال قرار گیرد. زیرا چنین تصور می شد كه شاید بتوان آن را به عنوان یك قضیه نه اصل از سایر اصول استخراج كرد، یا حداقل به جای آن می توان معادل قابل قبول تری قرار داد.
در طول تاریخ ریاضیدانان بسیاری از جمله، خواجه نصیرالدین طوسی، جان والیس، لژاندر، فوركوش بویوئی و ... تلاش كردند اصل پنجم اقلیدس را با استفاده از سایر اصول نتیجه بگیرنر و آن را به عنوان یك قضیه اثبات كنند. اما تمام تلاشها بی نتیجه بود و در اثبات دچار خطا می شدند و به نوعی همین اصل را در اثباط خود به كار می بردند. دلامبر این وضع را افتضاح هندسه نامید.
یانوش بویوئی یكی از ریاضیدانان جوانی بود كه در این را تلاش می كرد. پدر وی نیز ریاضیدانی بود كه سالها در این این مسیر تلاش كرده بود و طی نامه ای به پسرش نوشت: تو دیگر نباید برای گام نهادن در راه توازی ها تلاش كنی، من پیچ و خم این راه را از اول تا آخر می شناسم. این شب بی پایان همه روشنایی و شادمانی زندگی مرا به كام نابودی فرو برده است، التماس می كنم دانش موازیها را رها كنی. ولی یانوش جوان از اخطار پدیر نهرسید، زیرا كه اندیشه ی كاملاً تازه ای را در سر می پروراند. او فرض كرد نقیض اصل توازی اقلیدس، حكم بی معنی ای نیست. وی در سال 1823 پدرش را محرمانه در جریان كشف خود قرار داد و در سال 1831 اكتشافات خود را به صورت ضمیمه در كتاب تنتامن پدرش منتشر كرد و نسخه ای از آن را برای گائوس فرستاد. بعد معلوم شد كه گائوس خود مستقلاً آن را كشف كرده است.  بعدها مشخص شد كه لباچفسكی در سال 1829 كشفیات خود را در باره هندسه نااقلیدسی در بولتن كازان، دو سال قبل از بوئی منتشر كرده است. و بدین ترتیب كشف هندسه های نااقلیدسی به نام بویوئی و لباچفسكی ثبت گردید.

 هندسه های نا اقلیدسی

اساساً هندسه نااقلیدسی چیست؟ هر هندسه ای غیر از اقلیدسی را نا اقلیدسی می نامند. از این گونه هندسه ها تا به حال زیاد شناخته شده است. اختلاف بین هندسه های نا اقلیدسی و اقلیدسی تنها در اصل توازی است. در هندسه اقلیدسی به ازای هر خط و هر نقطه نا واقع بر آن یك خط می توان موازی با آن رسم كرد.  نقیض این اصل را به دو صورت می توان در نظر گرفت. تعداد خطوط موازی كه از یك نقطه نا واقع بر آن، می توان رسم كرد، بیش از یكی است. و یا اصلاً خطوط موازی وجود ندارند. با توجه به این دو نقیض، هندسه های نا اقلیدسی را می توان به دو گروه تقسیم كرد.

 

 

1- هندسه های هذلولوی  Hyperbolic Geometry

هندسه های هذلولوی توسط بویوئی و لباچفسكی بطور مستقل و همزمان كشف گردید.  اصل توازی هندسه هذلولوی - از یك خط و یك نقطه ی نا واقع بر آن دست كم دو خط موازی با خط مفروض می توان رسم كرد.

2 - هندسه های بیضوی Elliptic Geometry

در سال 1854 فریدریش برنهارد ریمان نشان داد كه اگر نامتناهی بودن خط مستقیم كنار گذاشته شود و صرفاً بی كرانگی آن مورد پذیرش واقع شود، آنگاه با چند جرح و تعدیل جزئی اصول موضوعه دیگر، هندسه سازگار نااقلیدسی دیگری را می توان به دست آورد. پس از این تغییرات اصل توازی هندسه بیضوی بصورت زیر ارائه گردید.  اصل توازی هندسه بیضوی - از یك نقطه ناواقع بر یك خط نمی توان خطی به موازات خط مفروض رسم كرد.  یعنی در هندسه بیضوی، خطوط موازی وجود ندارد. با تجسم سطح یك كره می توان سطحی شبیه سطح بیضوی در نظر گرفت. این سطح كروی را مشابه یك صفحه در نظر می گیرند. در اینجا خطوط با دایره های عظمیه كره نمایش داده می شوند. بنابراین خط ژئودزیك یا مساحتی در هندسه بیضوی بخشی از یك دایره عظیمه است.
در هندسه بیضوی مجموع زوایای یك مثلث بیشتر از 180 درجه است. در هندسه بیضوی با حركت از یك نقطه و پیمودن یك خط مستقیم در آن صفحه، می توان به نقطه ی اول باز گشت. همچنین می توان دید كه در هندسه بیضوی نسبت محیط یك دایره به قطر آن همواره كمتر از عدد پی است.

 انحنای سطح یا انحنای گائوسی

اگر خط را راست فرض كنیم نه خمیده، چنانچه ناگزیر باشیم یك انحنای عددی k به خطی نسبت دهیم برای خط راست خواهیم داشت k=o انحنای یك دایره به شعاع r برابر است با k=1/r.  تعریف می كنند. همچنین منحنی هموار، منحنی ای است كه مماس بر هر نقطه اش به بطور پیوسته تغییر كند. به عبارت دیگر منحنی هموار یعنی در تمام نقاطش مشتق پذیر باشد.
برای به دست آوردن انحنای یك منحنی در یك نقطه، دایره بوسان آنرا در آن نقطه رسم كرده، انحنای منحنی در آن نقطه برابر با انحنای دایره ی بوسان در آن نقطه است. دایره بوسان در یك نقطه از منحنی، دایره ای است كه در آن نقطه با منحنی بیشترین تماس را دارد. توجه شود كه برای خط راست شعاع دایره بوسان آن در هر نقطه واقع بر آن بینهایت است.

برای تعیین انحنای یك سطح در یك نقطه، دو خط متقاطع مساحتی در دو جهت اصلی در آن نقطه انتخاب كرده و انحنای این دو خط را در آن نقاط تعیین می كنیم. فرض كنیم انحنای این دو خط k1=1/R1 and k2=1/R2 باشند.

 آنگاه انحنای سطح در آن نقطه برابر است با حاصلضرب این دو انحنا، یعنی     k=1/R1R2     


انحنای صفحه ی اقلیدسی صفر است. همچنین انحنای استوانه صفر است:              k=0                   

برای سطح هذلولوی همواره انحنای سطح منفی است :                                    <0 k

برای سطح بیضوی همواره انحنا مثبت است :                                                >0 k

در جدول زیر هر سه هندسه ها با یكدیگر مقایسه شده اند:
نوع هندسه 
تعداد خطوط موازی 
مجموع زوایای

مثلث 
نسبت محیط

به قطر دایره 
اندازه انحنا

اقلیدسی 
یك 
180 
عدد پی 
صفر

هذلولوی 
بینهایت 
< 180 
> عدد پی 
منفی

بیضوی 
صفر 
> 180 
< عدد پی 
مثبت


 


 مفهوم و درك شهودی انحنای فضا

سئوال اساسی این است كه كدام یك از این هندسه های اقلیدسی یا نا اقلیدسی درست است؟

پاسخ صریح و روشن این است كه باید انحنای یك سطح را تعیین كنیم تا مشخص شود كدام یك درست است. بهترین دانشی كه
 می تواند در شناخت نوع هندسه ی یك سطح مورد استفاده و استناد قرار گیرد، فیزیك است. یك صفحه ی كاغذ بردارید و در روی آن دو خط متقاطع رسم كنید. سپس انحنای این خطوط را در آن نقطه تعیین كرده و با توجه به تعریف انحنای سطح حاصلضرب آن را به دست می آوریم. اگر مقدار انحنا برابر صفر شد، صفحه اقلیدسی است، اگر منفی شد می گوییم صفحه هذلولوی است و در صورتی كه مثبت شود، ادعا می كنیم كه صفحه بیضوی است .

در كارهای معمولی مهندسی نظیر ایجاد ساختمان یا ساختن یك سد بر روی رودخانه، انحنای سطح مورد نظر برابر صفر است، به همین دلیل در طول تاریخ مهندسین همواره از هندسه اقلیدسی استفاده كرده اند و با هیچگونه مشكلی هم مواجه نشدند. یا برای نقشه برداری از سطح یك كشور اصول هندسه ی اقلیدسی را بكار می برند و فراز و نشیب نقاط مختلف آن را مشخص می كنند. در این محاسبات ما می توانیم از خطكش هایی كه در آزمایشگاه یا كارخانه ها ساخته می شود، استفاده كنیم. حال سئوال این است كه اگر خطكش مورد استفاده ی ما تحت تاثیر شرایط محیطی قرار بگیرد چه باید كرد؟ اما می دانیم از هر ماده ای كه برای ساختن خطكش استفاده كنیم، شرایط فیزیكی محیط بر روی آن اثر می گذارد. البته با توجه با تاثیر محیط بر روی خطكش ما تلاش می كنیم از بهترین ماده ی ممكن استفاده كنیم. بهمین دلیل چوب از لاستیك بهتر است و آهن بهتر از چوب است.
اما برای مصافتهای دور نظیر فواصل نجومی از چه خطكشی (متری) می توانیم استفاده كنیم؟ طبیعی است كه در اینجا هیچ خطكشی وجود ندارد كه بتوانیم با استفاده از آن فاصله ی بین زمین و ماه یا ستارگان را اندازه بگیریم. بنابراین باید به سایر امكاناتی توجه كنیم كه در عمل قابل استفاده است. اما در اینجا چه امكاناتی داریم؟ بهترین ابزار شناخته شده امواج الكترومغناطیسی است. اگر مسیر نور در فضا خط مستقیم باشد، در اینصورت با جرت می توانیم ادعا كنیم كه فضا اقلیدسی است. برای پی بردن به نوع انحنای فضا باید مسیر پرتو نوری را مورد بررسی قرار دهیم .
اما تجربه نشان می دهد كه مسیر نور هنگام عبور از كنار ماده یعنی زمانی كه از یك میدان گرانشی عبور می كند، خط مستقیم نیست، بلكه منحنی است. بنابراین فضای اطراف اجسام اقلیدسی نیست. به عبارت دیگر ساختار هندسی فضا نااقلیدسی است.


نوشته شده توسط : علی رضایی